1,586 research outputs found

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    New Observations of the Crab Nebula and Pulsar

    Get PDF
    We present a phase-resolved study of the X-ray spectrum of the Crab Pulsar, using data obtained in a special mode with the Chandra X-ray Observatory. The superb angular resolution easily enables discerning the Pulsar from the surrounding nebulosity, even at pulse minimum. We find that the Pulsar's X-ray spectral index varies sinusoidally with phase---except over the same phase range for which rather abrupt changes in optical polarization magnitude and position angle have been reported. In addition, we use the X-ray data to constrain the surface temperature for various neutron-star equations of state and atmospheres. Finally, we present new data on dynamical variations of structure within the Nebula

    Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    Get PDF
    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology

    Technology Requirements for a Square Meter, Arcsecond Resolution Telescope for X-Rays: The SMART-X Mission

    Get PDF
    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory

    Development Status of Adjustable X-Ray Optics with 0.5 Arcsecond Resolution

    Get PDF
    We report on the continuing development of adjustable, grazing incidence X-ray optics for 0.5 arcsec telescopes. Adjustable X-ray optics offer the potential for achieving sub-arcsecond imaging resolution while sufficiently thin and light-weight to constitute a mirror assembly with several square meters collecting area. The adjustable mirror concept employs a continuous thin film of piezoelectric material deposited on the back of the paraboloid and hyperboloid mirror segments. Individually addressable electrodes on the piezoelectric layer allow the introduction of deformations in localized "cells" which are used to correct mirror figure errors resulting from fabrication, mounting and aligning the thin mirrors, residual gravity release and temperature changes. We describe recent results of this development. These include improving cell yield to approx. 100 per cent, measurements of hysteresis and stability, comparisons of modeled and measured behavior, simulations of mirror performance, and the development and testing of conical Wolter- I mirror segments. We also present our plans going forward toward the eventual goal of achieving TRL 6 prior to the 2020 Decadal Review

    Recent Progress in Adjustable X-ray Optics for Astronomy

    Get PDF
    Two adjustable X-ray optics approaches are being developed for thin grazing incidence optics for astronomy. The first approach employs thin film piezoelectric material sputter deposited as a continuous layer on the back of thin, lightweight Wolter-I mirror segments. The piezoelectric material is used to correct mirror figure errors from fabrication, mounting/alignment, and any ground to orbit changes. The goal of this technology is to produce Wolter mirror segment pairs corrected to 0.5 arc sec image resolution. With the combination of high angular resolution and lightweight, this mirror technology is suitable for the Square Meter Arc Second Resolution Telescope for X-rays (SMART-X) mission concept.. The second approach makes use of electrostrictive adjusters and full shell nickel/cobalt electroplated replication mirrors. An array of radial adjusters is used to deform the full shells to correct the lowest order axial and azimuthal errors, improving imaging performance from the 10 - 15 arc sec level to ~ 5 arc sec. We report on recent developments in both technologies. In particular, we discuss the use of insitu strain gauges on the thin piezo film mirrors for use as feedback on piezoelectric adjuster functionality, including their use for on-orbit figure correction. We also report on the first tests of full shell nickel/cobalt mirror correction with radial adjusters

    Mild Pd-Catalyzed Aminocarbonylation of (Hetero)Aryl Bromides with a Palladacycle Precatalyst

    Get PDF
    A palladacyclic precatalyst is employed to cleanly generate a highly active XantPhos-ligated Pd-catalyst. Its use in low temperature aminocarbonylations of (hetero)aryl bromides provides access to a range of challenging products in good to excellent yields with low catalyst loading and only a slight excess of CO. Some products are unattainable by traditional carbonylative coupling.National Institutes of Health (U.S.) (Award GM46059)Danish National Research Foundation (Grant DNRF59)Villum FoundationDanish Council for Independent Researc

    Observations of 4U 1626-67 with the Imaging X-ray Polarimetry Explorer

    Get PDF
    We present measurements of the polarization of X-rays in the 2-8 keV band from the pulsar in the ultracompact low mass X-ray binary 4U1626-67 using data from the Imaging X-ray Polarimetry Explorer (IXPE). The 7.66 s pulsations were clearly detected throughout the IXPE observations as well as in the NICER soft X-ray observations, which we use as the basis for our timing analysis and to constrain the spectral shape over 0.4-10 keV energy band. Chandra HETGS high-resolution X-ray spectra were also obtained near the times of the IXPE observations for firm spectral modeling. We find an upper limit on the pulse-averaged linear polarization of <4% (at 95% confidence). Similarly, there was no significant detection of polarized flux in pulse phase intervals when subdividing the bandpass by energy. However, spectropolarimetric modeling over the full bandpass in pulse phase intervals provide a marginal detection of polarization of the power-law spectral component at the 4.8 +/- 2.3% level (90% confidence). We discuss the implications concerning the accretion geometry onto the pulsar, favoring two-component models of the pulsed emission.Comment: 19 pages, 7 figures, 7 tables; accepted for publication in the Astrophysical Journa

    Global and national Burden of diseases and injuries among children and adolescents between 1990 and 2013

    Get PDF
    Importance The literature focuses on mortality among children younger than 5 years. Comparable information on nonfatal health outcomes among these children and the fatal and nonfatal burden of diseases and injuries among older children and adolescents is scarce. Objective To determine levels and trends in the fatal and nonfatal burden of diseases and injuries among younger children (aged <5 years), older children (aged 5-9 years), and adolescents (aged 10-19 years) between 1990 and 2013 in 188 countries from the Global Burden of Disease (GBD) 2013 study. Evidence Review Data from vital registration, verbal autopsy studies, maternal and child death surveillance, and other sources covering 14 244 site-years (ie, years of cause of death data by geography) from 1980 through 2013 were used to estimate cause-specific mortality. Data from 35 620 epidemiological sources were used to estimate the prevalence of the diseases and sequelae in the GBD 2013 study. Cause-specific mortality for most causes was estimated using the Cause of Death Ensemble Model strategy. For some infectious diseases (eg, HIV infection/AIDS, measles, hepatitis B) where the disease process is complex or the cause of death data were insufficient or unavailable, we used natural history models. For most nonfatal health outcomes, DisMod-MR 2.0, a Bayesian metaregression tool, was used to meta-analyze the epidemiological data to generate prevalence estimates. Findings Of the 7.7 (95% uncertainty interval [UI], 7.4-8.1) million deaths among children and adolescents globally in 2013, 6.28 million occurred among younger children, 0.48 million among older children, and 0.97 million among adolescents. In 2013, the leading causes of death were lower respiratory tract infections among younger children (905 059 deaths; 95% UI, 810 304-998 125), diarrheal diseases among older children (38 325 deaths; 95% UI, 30 365-47 678), and road injuries among adolescents (115 186 deaths; 95% UI, 105 185-124 870). Iron deficiency anemia was the leading cause of years lived with disability among children and adolescents, affecting 619 (95% UI, 618-621) million in 2013. Large between-country variations exist in mortality from leading causes among children and adolescents. Countries with rapid declines in all-cause mortality between 1990 and 2013 also experienced large declines in most leading causes of death, whereas countries with the slowest declines had stagnant or increasing trends in the leading causes of death. In 2013, Nigeria had a 12% global share of deaths from lower respiratory tract infections and a 38% global share of deaths from malaria. India had 33% of the world’s deaths from neonatal encephalopathy. Half of the world’s diarrheal deaths among children and adolescents occurred in just 5 countries: India, Democratic Republic of the Congo, Pakistan, Nigeria, and Ethiopia. Conclusions and Relevance Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies. Monitoring these trends over time is also key to understanding where interventions are having an impact. Proven interventions exist to prevent or treat the leading causes of unnecessary death and disability among children and adolescents. The findings presented here show that these are underused and give guidance to policy makers in countries where more attention is needed
    corecore